# Experimental streamflow forecasts for Spring 2003

#### Martyn P. Clark

Center for Science and Technology Policy Research
Cooperative Institute for Research in Environmental Sciences
University of Colorado, Boulder

#### Lauren E. Hay

Water Resources Division
United States Geological Survey, Denver

#### **Subhrendu Gangopadhyay**

Center for Science and Technology Policy Research and
Department of Civil, Environmental and Architectural Engineering
University of Colorado, Boulder

#### OUTLINE

**Summary of problems with NWP model output** 

Use of downscaling techniques to compensate for NWP model shortcomings

**Experimental hydrologic forecasts** 

**Technology Transfer** 



### MRF FORECAST ARCHIVE

### □ The NCEP/NCAR reanalysis –

a 40+ year record of global atmospheric fields and surface fluxes derived from a numerical weather prediction and data assimilation system kept unchanged over the analysis period

 Every five days, a single realization of an 8-day forecast was run

for the period 1958-1998, this provides over 2500 8-day forecasts that can be compared with observations

Model output is archived on a regular lat/lon grid with approx 1.875° horizontal resolution.

#### PRECIPITATION BIASES



Precipitation biases are in excess of 100% of the mean

#### **TEMPERATURE BIASES**



Temperature biases are in excess of 3°C























#### **January Precipitation Amounts—Day 5**



#### **July Precipitation Amounts—Day 5**



# DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- Predictor Variables (over 300):
  - Geo-potential height, wind, and humidity at five pressure levels
  - Various surface flux variables
  - Computed variables such as vorticity advection, stability indices, etc.
  - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts



# DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- Predictor Variables (over 300):
  - Geo-potential height, wind, and humidity at five pressure levels
  - Various surface flux variables
  - Computed variables such as vorticity advection, stability indices, etc.
  - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts
- Use cross-validation procedures for variable selection – typically less than 8 variables are selected for a given equation
- Stochastic modeling of the residuals in the regression equation to provide ensemble time series



# DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- Predictor Variables (over 300):
  - Geo-potential height, wind, and humidity at five pressure levels
  - Various surface flux variables
  - Computed variables such as vorticity advection, stability indices, etc.
  - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts
- Use cross-validation procedures for variable selection – typically less than 8 variables are selected for a given equation
- Stochastic modeling of the residuals in the regression equation to provide ensemble time series



- •A separate equation is developed for each station, each forecast day, and each month.
- Equations developed over the period 1958-1976, and validated for the period 1977-1998.





#### **January Precipitation Amounts—Day 0**



#### July Precipitation Amounts—Day 0



#### SKILL OF MAXIMUM TEMPERATURE PREDICTIONS



□ Median explained variance of maximum temperature predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based

on MOS guidance.

#### SKILL OF MINIMUM TEMPERATURE PREDICTIONS



□ Median explained variance of minimum temperature predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based on MOS guidance.

#### SKILL OF PRECIP OCCURRENCE PREDICTIONS



□ Median explained variance of precipitation occurrence predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based on MOS guidance.

#### SKILL OF PRECIPITATION PREDICTIONS



- ☐ Median explained variance of precipitation predictions, computed for the 11,000 NWS co-op stations.
- ☐ Red is raw NCEP predictions, blue is based on MOS guidance.



## **Hydrologic Model**



# Precipitation Runoff Modeling System (PRMS)

[distributed –parameter, physically-based watershed model]

## Implemented in:

# The Modular Modeling System (MMS)

[A set of modeling tools to enable a user to selectively couple the most appropriate algorithms]





# Ranked Probability Score

Measure of probabilistic forecast skill



SDS ----

## Methods for experimental forecasts



 Purpose: Downscale global-scale atmospheric forecasts to local scales in river basins (e.g., individual stations).

## Downscaling approach

- Identify outputs from the global-scale Numerical Weather Prediction (NWP) model that are related to precipitation and temperature in the basins of interest
  - Geo-potential height, wind, and humidity at five pressure levels
  - Various surface flux variables
  - Computed variables such as vorticity advection, stability indices, etc.
  - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Use NWP outputs in a statistical model to estimate precipitation and temperature for the basins
  - Multiple linear regression
  - Local polynomial regression
  - K-nn
  - Canonical Correlation Analysis
  - Artificial Neural Networks
  - NWS bias-correction methodology

#### Multiple linear regression approach

□ Multiple linear Regression with forward selection

$$Y = a_0 + a_1X1 + a_2X2 + a_3X3 + \dots + a_nXn + e$$

- Use cross-validation procedures for variable selection typically less than 8 variables are selected for a given equation
- Stochastic modeling of the residuals in the regression equation to provide ensemble time series
- A separate equation is developed for each station, each forecast lead time, and each month.
- □ Regression coefficients estimated for the period of the NWP hindcast (1979-2001) and applied to the CDC experimental forecasts in real-time
- Local-scale precipitation and temperature forecasts are used as input to the CBRFC hydrologic modeling system to provide real-time forecasts of streamflow

# Results for example basins



#### Cawc2llf



#### Ealc2luf



#### Fptc2huf



#### Gbyc2hmf



#### Krmc2IIf



# **Ongoing work**

- Implement logistic regression to predict the probability of precipitation occurrence (done)
- Cross-validated MLR results (runs are in progress)
- Comparisons with downscaling to station data (runs are also in progress)
- Estimates of necessary sample size to develop stable regression equations
- Use of pooled regression to increase sample size and preserve spatial co-variability (evaluate possible tradeoffs between accuracy at individual stations and the consistency of the spatial fields)
- Implementation of other statistical techniques (K-nn, CCA, ANN, NWS bias correction, etc.)

# **Impact**

- Partnerships with NWS Office of Hydrologic Development and CBRFC to develop state-ofthe-art techniques for hydrologic forecasting (through well-documented scientific comparisons)
- Implement these techniques in NWS operations.